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ABSTRACT

The dispersion characteristics of graded index
optical fiber are studied using a transverse
transmission line circuit representation. For
round fibers new approximations have been devel-
oped which significantly simplifies the
analysis. An interesting perspective as to the
physical mechanisms underlying the dispersion
characteristics of such fibers result from
circuit theoretic considerations.

1. Introduction

The two geometries considered are rectang-
ular and circular. Such fibers consist of a core
region surrounded by a cladding. Since the
refractive index of the cladding is much less
than that of the core, electromagnetic energy in
this jacketed region will decay exponentially.
It will be assumed that this cladding extends to
infinity.

The approach taken here is to represent
the continuously varying dielectric profile with
a stepwise approximation. This is physi-
cally analogous to an optical waveguide consist-
ing of stratified layers of dielectric material
of different permittivities. Such a stepwise
approximation facilitates an interesting circuit
representation, in that an element of the strata
is representable by a lossless transmission line
whose characteristic impedance is frequency
dependent. The transverse plane of the graded
index fiber is thus represented by a cascade of
these transmission lines with appropriate
terminations. Since the type of profiles
considered in this study decrease monotonically
with increasing transverse distance, the
transverge wavenumber can become imaginary. The
transverse transmission line system thus in fact
emulates the performance of the actual fiber by
exhibiting a terminal plane on one side of which
the lines propagate and beyond which they are
cutoff. The location of this terminal plane de-
pends on the spatial distribution of dielectric
constants, the free space wave number K,= w/c,
and the mode in question. It is this transverse
cutoff which gives the graded index optical
fiber its desirable dispersive properties.
Evanescent sections of line that exist between
propagating lines and the cladding provide
shielding which in effect prevents the propagat—
ing sections of line from "seeing" the abrupt
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dielectric discontinuity at the core-clad
interface. The propagating portion of the line
system on the otherhand functions like an
impedance matching transformer.

Unlike the slab which can be modeled with
uniform transmission lines, the graded index rod
necessitates the use of radial transmission
lines. Several simplifying approximations for
radial functions are obtained which permit a
uniform line representation. These approxima-
tions are general in scope and suggest the
global applicability of the concepts developed.

2. The Graded Index Dielectric Slab Waveguide

One of the simplest types of graded index
optical waveguide is the dielectric sheet of
uniform thickness and of infinite extent in the
v-z plane. Figure 1 illustrates the transversly
stratified approximation used to obtain a trans-—
mission line model.
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Fig. 1 Approximate Graded Index Slab
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The procedure described below will concen-—
trate only on the discrete quided modes of the
graded index slab. The description is simplified
by assuming that no component of electric or
magnetic field contains y variation.

Only the transverse electric or TE modes,
characterized by E_ = 0 are considered. The
transverse magneti¢ or TM modes can be similarly
obtained but are not given here.

Consider an arbitrary section of the
stratified approximation of figure 1. This
section is of length (x.,~x) and uniform permit-
tivity e.. The transverse transmission line
charactristics are obtained from Maxwell's
equations. For the steady state angular
frequency w and z-direction variation exp(jpz),
the resulting open circuit impedance matrix of
the 2-port representing a width of transverse
slab from x to X, is given by

ctn k(xo—x) cse k(xo—x)

ZTE = _jz (1)

csc k(xo—x) ctn k(xo—x)
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where Z = KoZo/k, k= €K -B7, €= ei/eo

This transmission line representation has
been cbtained on the assumption that the line is
propagating in the x-direction, but the behavior
of the graded index waveguide is intimately re-
lated to the existance of a transverse plane be-
yond which the slab is transversly cutoff. Such
a section of dielectric slab is represented by a
cutoff line whose corresponding 2-port impedance
matrix is obtained by setting k=-jh in eq. (1).

With the intervening elements of the
strata each specified, it now becames necessary
to specify the terminations. The cladding is
represented by an infinite cutoff line whose
input impedance is obtained from equation (1) by
letting x, approach infinity with x fixed. This
gives z=j Zo/h. A lumped impedance of this
value can Qhen be used to represent the cladd-
ing. The inner most termination depends upon the
class of TE modes. For symmetric the E_ is
maximum at x=0 which corresponds to an dpen
circuit termination.

The value of forward propagation constant
is obtained using transverse resonance techni-—
ques [4].

For the numerical results the innermost or
core section has been assigned a relative
permittivity of 2.45. The outermost section or
cladding has a relative permittivity of unity.
For square law indexing the intervening sections
have relative permittivity given by

. . 2
€ei _ ntl-1 .
g_écore ['——n_i ] 5 1 2,3,...,n (2)

where n is the total number of sections, A is a
parameter chosen to obtain the desired minimum
permittivity for the penultimate section. The
group delay is computed by means of a five point
polynomial approximation for d}3/dKO. The
tabular results are given in terms of a
"dispersion index", To defined by

%g= dB/dK - 4 ecore (3

Kirchhoff [2] has solved the exact
differential equation for the case of a 1-x
type dielectric profile. These results are used
for direct comparison.
Table 1 compares the exact propagation constant
and dispersion index of the graded index slab
with a 20 line approximation.

3. The Graded Index Dielectric Rod Waveguide

The structure to be studied is shown in
figure 2. The solutions to Maxwell's equtions
will be a travelling wave of the form

E = E(r)eJ ne- ﬁz)’ H = ﬂ(r)ej ne - 8z) (4)

The TE and T™™ mode designation exists only
for n=0. For n>0 all six electromagnetic field
components are necessary to describe the dis-
crete guided modes (termed hybrid modes) and are
designated as HE or EH.

Consider one element of the stratified
waveguide of figure 2 which can be envisioned as

an annular dielectric ring of uniform permittivity.

GRADED INDEX SLAB
TEon Symmetric Modes

K =40 A = 0.05
[¢]

Propagation Constant B

n exact 20-line approx.
1 62.54 62.54
2 62.25 62.25
3 61.91 61.90
4 61.45 61.44
5 60.83 60.82
Dispersion Index To
n exact 20-line approx.
1 9.65x10 7.79%x10"
2 7.51x10"4 8.57x1074
3 5.90x1073 5.8x1073
4 1.69x10"2 1.67x1072
5 3.25%1072 3.23x1072
10 Ty has units of micro seconds/kilometer
3.

TABLE 1

Fig. 2 Approximate Graded Index Foc

Consider the TE modes. The resulting 2-
port impedance matrixis obtained from Maxwell's
equations and is given by

Z() _23’___02}(; )
2 = 3 , Z(‘ ) . (5)
r
MO ST
where Z(r) is the radial characteristic
impedance
Z(r) = 27K 7 [k (6)
The terms M and M' are radial functions
M(x,y) = J (X)N_(y)-J (y)N_(x) (7)

M (x,y)=T D GON (y)=I0 (VNP (x) (8)
x=kr, y=Krt,, Jn and N_ are Bessel functions of
the first and Second Pind (n=0 for TE modes)

For the HE., mode azimuthal variation of
field components fiake the formulation more com—
plex. Simplification occurs by noting that for
this lowest order HE mode the z-camponent of the
electric field is negligibly small [6]. The



approximation E_=0 results in a single radial
line representagion whose 2-port impedance
matrix is

M' 22(x) 1

L = 3 g y M &)
2Z(r ) 1 M
YO ® Ly

Radial transmission lines differ from
uniform transmission lines in two major re-
spects. The first is the lack of a unique
characteristic impedance. Secondly, the
transverse fields are described with radial
functions.

The simplest radial functions, occur when
n =0 [7] and are given by

Csx,y) =7y {J; (N &) - I Ny (D} /2
es(x,y) =my {3 GON (5) - I (NN )} /2

Sn(x,y) =7y {J (9N ) - Jl(x)Nl(y)} /2

sn(x,y) =7y {Jo(N x) - I N (N} /2 10)
The functions cs and Cs are termed the small and
large radial cosine, and sn and Sn are the small

and large radial sine functions respectively.
Define the small and large radial cotangent as

_ cs(x,y) _ Cs(x,y)
ct(x,y) Sy Ct(x,y) Sy an
These radial cotangents satisfy
ct(x,y) e(x.,y) =—Ct(x,y) (12)

where € (x,y)= sn(x,y)/Sn(x,y)

Approximations to the radial functions are
given by

Ct(x,y) ;,x(;?;)/x) ctn(y-x) (13)
ct(x,y) ¥ ( ;X) Cg?; ;§) 2 (14)
ox,y) = - Ct(x,y) ~ xy In"(y/x) (15)

ct(x,y) (y—x)2
The radial cosecant (cst) is computed with the
identity

cst?(x,y) = {1+ ctx,y) Ct@,x) |/ e&y) (16)

Equations (13} through (15) were obtained
in a semi-emperical manner employing numerical
curve fitting.

Figures 3 and 4 show the relative error for the
radial cotangent ct(x,y) and radial cosecant
cst(x,y) and their approximations, respectively,
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ctn k(ro-r) cse k(ro—r)
g = 32055
cse k(ro—r) ctn k(ro—r)
an
where Z(r,r.) = %g Kz (T
oo In(ro7r) (18)

The interesting consequence of the approximation
is to yield a uniform transmission line of
electrical length k(r,-r) and characteristic
impedance Z(x,rn). Tge resulting description,
once the parameters r and r, have been speci-
fied, differ from the resulgs obtained for the
dielectric slab only in the definition of the
characteristic impedance.

A similar procedure is followed for the
HE, ; mode. The radial functions are defined by
eq. (7) and (8) with n=1.
The impedance matrix for the HE, mode (with
Ez=0) is given by

for electrical lengths as fractions of normal- 2 :

ized unit to total radius, with y-x = k(ry-r) , retnu  rrescu 10

r<r,<1 with r,-r=1/25 and k = 1,2,...,20 7= -ji(r,r)) -3z

The approxima%ions are no longer applicable for o 2 s

values of r approaching zero. This is not the rrpescu  rjctnu 0 -1 (19)

serious concern since the innermost line is In(r_-r)

readily dealt with in an exact manner. 2, ) =Kl L 7 = 2"'K 7, u=k(r -r)
These approximations may now be substi- 7o 5 (ro—r) P Ts ;2 oo o

tuted into the impedance matrices previously (20)

obtained. For TE modes, Zp, becomes Once again we have a radial line model in which

the incremental section employs a uniform line.
This uniform transmission line representation is
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best visualized by means of the circuit model
shown in figure 5.
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Fig. 5 Uniform Transmission Line Model

Again transversly evanescent lines can be
obtained by substituting k=jh.

The core and cladding terminations still
must be specified. The radial function approx-
imations are not valid for a section of line
which includes r = 0. This problem is circum-
vented by moving one section to the right and
computing the core impedance from equation(17)
for TE modes or equation (19) for the HE1 mode
by taking the limit as x—-0,y fixed, yie}ding

_ {-jz(ro)Jé(y)/Jo(y)
core 32t )3} 3 /3] )

The cladding is defined by a cutoff line of
infinite length. Thus, for x fixed and y—»

—jZ(r)Ké(x)/Ko(x) TE modes

TE modes
21)
HE11 mode

chad= { (22)

K_ is the modified Bessel function of order n.
a1 comments pertaining to the numerical results
for the slab carry over here. The ability of
the uniform line cascade to accurately model a
radial transmission line can be verified by
considering a uniform (no grading) dielectric
rod since exact results for this case are ob-
tained readily. Such a comparison for the HE
mode is shown in table 2. Tables 3 and 4 give
the dispersion index for the TE n and HE,, modes
of the uniform line model of the graded index
rod with a square law profile. Note that a
significantly larger number of lines is
necessary for the HE 1 mode because of the
additional approxima%lons made.

-JZ()K] (%) /Ky (%) HE,| mode

UNIFORM DIELECTRIC ROD

HEll mode, I<.0 = 50

rS

8 9 4 no. of lines
78.23 7.06x10_ exact
78.22 7.95x10_ 30
78.22 7.54x10_, 40
78.23 7.27x10 50

TABLE 2
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GRADED INDEX ROD
TEon modes, Ko = 50, A = 0.05

Tg (40-lines) ¥g (50-1ines)

n
1 1.43x107% 1.25x107 >
2 1.36x1073 1.35x10~3
3 6.5 x1073 6.51x1073
4 l.56x10_2 1.57x10_2
5 2.76x10 2.77x10
TABLE 3
GRADED INDEX ROD
HEll mode, Ko = 50, A = 0.05
No. of 1i T
mes E -5
100 l.91x10_5
125 1.85x10_
150 1.77x10_¢
175 1.68x10__
200 1.62x10
TABLE 4
10 -
59- Tg has units of microseconds/kilometer
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