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ABSTRACT

The dispersion characteristics of graded index
optical fiber are studied using a transverse
transmission line circuit rep~esentation. For
round fibers new approximations have been devel-
oped which significantly simplifies the
analysis. M interesting perspective as to the
physical mechanisms underlying the dispersion
characteristics of such fibers result frcrn
circuit theoretic considerations.

1. Introduction

The two gecmretries considered are rectang-
ular and circular,, Such fibers consist of a core
region surrounded by a cladding. Since the
refractive index of the cladding is much less
than that of the core, electromagnetic energy in
this jacketed region will decay exponentially.
It will be assumecl that this cladding extends to
infinity.

The approach taken here is to represent
the continuously varying dielectric profile with
a stepwise approximation. This is physi-
cally analogous to an optical waveguide consist-
ing of stratified layers of dielectric material
of different permi.ttivities. Such a stepwise
approximation facilitates an interesting circuit
representation, in that an element of the strata
is representable by a lossless transmission line
whose characteristic impedance is frequency
dependent. The transverse plane of the graded
index fiber is thus represented by a cascade of
these transmission lines with appropriate
terminations. Since the type of profiles
considered in this study decrease monotonically
with increasing transverse distance, the
transverse wavenunber can beccme imaginary. The
transverse transmission line system thus in fact
emulates the performance of the actual fiber by
exhibiting a terminal plane on one side of which
the lines propagate and beyond which they are
cutoff . The location of this terminal plane de-
pends on the spatial distribution of dielectric
constants, the free space wave number Ko=@/c,

and the rude in question. It is this transverse
cutoff which gives the graded index optical
fiber its desirable dispersive properties.
Evanescent sections of line that exist between
propagating lines and the cladding provide

shielding which in effect prevents the propagat–
ing sections of line frcxn “seeing” the abrupt

dielectric discontinuity at the core-clad
interface. The propagating portion of the line
system on the otherhand functions like an
impedance matching transformer.

Unlike the slab which can be mcdeled with
uniform transmission lines, the graded index rcd
necessitates the use of radial transmission
lines. Several simplifying approximations for
radial functions are obtained which permit a
uniform line representation. These approxima-
tions are general in scope and suggest the
global applicability of the concepts developed.

2. The Graded Index Dielectric Slab Waveguide

One of the simplest types of graded index
optical waveguide is the dielectric sheet of
uniform thickness and of infinite extent in the
y–z plane. Figure 1 illustrates the transversely
stratified approximation used to obtain a trans-
mission line mcdel.
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Fig. 1 Approximate Graded Indez Slab

The procedure descrihd below will concen-
trate only on the discrete quided modes of the
graded index slab. The description is simplified
by assuming that no can~nent of electric or
magnetic field contains y variation.

Only the transverse electric or TE mcdes,
characterized by E = O are considered. The
transverse magneti$ or TPl modes can be similarly
obtained but are not given here.

Consider an arbitrary section of the
stratified approximation of figure 1. This
section is of length (XO-X) and uniform pe~it-
tivity ~i. The transverse transmission line
charactrlstics are obtained fran Maxwell’s
equations. For the steady state angular
frequency w and z-direction variation eXP(j(3Z),
the resulting open circuit impedance matrix of
the 2-port representing a width of transverse
slab frcxn x to X. is given by

[

CtIl k(xo-x) CSC k(xo-x)

~ . _jz
1

(1)
CSC k(xo-x) CtIl k(xo-x)
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where Z =KoZo/k, k=
-Y ‘ “i.ieo

This transmission line representation has
been obtained on the assumption that the line is
propagating in the x-direction, but the behavior
of the graded index wavaguide is intimately re-
lated to the exiskance of a transverse plane be-
yond which the slab is transversely cutoff. Such
a section of dielectric slab is represented by a
cutoff line whose corresponding 2-port impedance
matrix is obtained by setting k=-jh in eq. (1).

With the intervening elements of the
strata each specified, it nw beccxnes necessary
to specify the tenninations. The cladding is
represented by an infinite cutoff line whose
input impedance is obtained frcm equation (1) by
letting x approach infinity with x fixed. This
gives Z=jf?~ZO/h. A lumped impedance of this
value can hen be used to represent the cladd-
ing. The inner most termination depends upon the
class of TE ties. For syrmnetric the E is
maximum at x=O which corresponds to an ~pen
circuit termination.

The value of forward propagation constant
is obtained using transverse resonance techni–
ques [4].

For the nunerical results the innermost or
core section has been assigned a relative
permittivity of 2.45. The outermost section or
cladding has a relative permittivity of unity.
For square law indexing the intervening sections
have relative permittivity given by

~i [1n+l-i
2

—.
Ccore - x

;i=2,3 9...7 n (2)
‘o

where n is the total number of sections, A is a
parameter chosen to obtain the desired minimum
permittivity for the penultimate section. The
group delay is ccxnputed by means of a five point
polynomial approximation for dfl/dKo. The

tabular results are :iven in terms of a
“dispersion index”, ‘r- defined bv

(3)

0 Kirchhoff [2] has solved the exact
differential equation for the case of a 1-x2
type dielectric profile. These results are used
for direct comparison.
Table 1 ccmpares the exact propagation constant
and dispersion index of the graded index slab
with a 20 line approximation.

3. The Graded Index Dielectric Rcd Waveguide

The structure to be studied is shown in
figure 2. The solutions to Maxwell’s equtions
will be a traveling wave of the form

E=E(r)ej(no”-Pz),~= H(r)ej(n@-8z) (4)— — —
The TE and TM mcde designation exists only

for n=O. For n.>0 all six electraagnetic field
canponents are necessary to describe the dis-
crete guided ties (termed hybrid mcdes) and are
designated as HE or EH.

Consider one element of the stratified
waveguide of figure 2 which can be envisioned as
an annular dielectric ring of uniform permittivity.
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GFADED INDEX SLAB
TEon Symmetric Modes

K. = 40 A = 0.05

Propagation Constant f?
exact
62.54

20-line approx.
62.54

62.25 62.25
61.91 61.90
61.45 61.44
60.83 60.82

A

Dispersion Index TO
exact
— -6
9.65x1O

2&-line approx.
7.79X1O-5

7.51X1O-4 8.57x10-4
5.9OX1O-3 5.8x10-3
1.69x10-2 1.67x10-2
3.25x10-2 3.23x10-2

.
10 Tg has units of micro seconds/kilometer

T
TASLE 1

Fig. 2 Approx@te Graded Index ?.oC.

Consider the TE modes. The resulting 2-
port impedance matrixis obtained frcm Maxwell’s
equations and is given by

where Z(r) is the radial characteristic
impedance

Z(r) = 2~rKoZo/k (6)

The terms M and M’ are radial functions
M(x,y) =J (x)N (y)-J (y)N (X) (7)
M’(x,y)=’n(x)~(y)-~(y)~n(x) (8)

x=kr, y=kro, ‘J a!d N ~re Bessel functions of
the first and ~econd Rind (n=O for TE mcdes)

‘or ‘he ‘En mode azimuthal variation of
field cmnponents make the formulation mve cm

plex. Simplification occurs by noting that for
this lowest order HE tie the z-canpenent of the
electric field is negligibly small [6]. The
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approximation E =0 results in a single radial
line representation whose 2-port impedance
matrix is

0. 077S90

0. Oaami

jJ----H-+p=pj+-j--J——
,!,

0.082072

[--

Z(r);’
2Z(r) 1—.

~..j
yM

1
(9)

2Z(r ) 1
R

-Z(ro)#’
Y

Radial transmission lines differ frcxn
uniform transmission lines in two major re-
spects . lhe first is the lack of a unique
characteristic impedance. Secondly, the
transverse fields are described with radial
functions.

‘he simplest radial functions, cccur when
~ = O [7] and are given by

CS(x,y) =~y{J1(y)No(x) - JO(X)NI(Y)l /2

cs(x,y) =Ty{Jl(X)No(y) - Jowl} /2

Sn(x,y) ‘~y{Jl(y)Nl(x) -Jl(x)Nl(y)\ /2

sn(x,y) =Ty {JO(Y)NO(X) - JO(X)NO(Y)} /2 (10)

‘z0.015510
0. 0077s9

*-.._~_}–.} .. ..+..l_l

0.000000

0,1 0.3 0.3 0.4 0.5 0.0, 0.7 o.e o.a :.0

Fig, 3 Relative Error ; ct(x,y)

0.000204

0,000005

0. OO07N

0. 00M20

g 0. W95S7

The functions cs and Cs are termed the small and
large radial cosine, and sn and Sn are the small
and large radial sine functions respectively.
Eefine the small and large radial cotangent as

Cs(x, y) CS(X,Y)
Ct(x’y)= -sn(x,y) ‘ ct(x,Y) = -*(X,Y)

(11)
0.000000

0.1 0.2 0.3 0.4 0.!3 0.8 0.7 0.8 0.s t. o

Fig. 4 F@lative Error ; CSC(X,Y)
These radial cotangents satisfy

ct(x,y) e(x,y) =-ct(x,y) (12)

where
Q (x,y)=sn(x,y)/Sn(x,y) csc k(ro-r)

1ctn k(ro-r)

(17:)

(18:)

[

ctn k(ro-r)

~ = -jZ(r,ro)

csc k(ro-r)

where Z(r,ro) =#’KoZo
(rO-r)

q)

Approximations to the radial functions are
given by

-x ln( /x) ~m(y_x)

Ct(x,y) = ~y_x; (13)

( :x) Ctn( -x)
Ct(x,y) =+* (14)

p(x,y) =--~
Ct(x,y)

q ln2(;/x) ~pj,

(y-x)
The interesting consequence of the approximation
is to yield a uniform transmission line of
electrical length k(r -r) and characteristic

~ . de resulting description,impedance Z(rrr )
once the parame ers r and r have been speci-

?fied, differ frcm the resul s obtained for the
dielectric slab only in the definition of the
characteristic impedance.

A similar procedure is followed for the

‘El 1
mcde. The radial functions are defined by

eq. (7) and (8) with n=l.
The impedance matrix for the HE,, male (with

The radial cosecant (cst) is canputed with the
identity

CSt2(X,y) = {1 ‘+ Ct(WY) Ct(y>x)} / P(x)y) (1(j)

Equations (13) through (15) were obtained
in a semi-emperical manner employing numerical

curve fitting.
Figures 3 and 4 show the relative error for the
radial cotangent ct(x,y) and radial cosecan<
cst(x,y) and their approximations, respectively,
for electrical lengths as fractions of normal-
ized unit to total radius, with Y-X = k(ro-r) t

r<ro<l with r -r=l/25 and k = 1,2,...,20
?“The approxima Ions are no longer applicable for

values of r approaching zero. This is not the
serious concern since the innernost line is
readily dealt with in an exact manner.

These approximations may now be substi-

EZ=O) is given by

[

r2ctn u

Z = -jZ(r,ro)

rrocsc u

In(r -r)
Z(r,ro) =kZS ~rO_r) ,

0

J..i

rrocsc u

1[1
10

-j Zs
2

r. ctn u o -1 ~19)

Zs = ~KoZo, u=k(ro-r)
k (20)tuted into the impedance

obtained. For TE KKMeS,

matrices previously

‘TE
bsccrnes

Once again we have a radial line mcdel in which
the incremental section employs a uniform line.
This uniform transmission line representation is
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best visualized by means of the circuit mcdel
shown in figure 5.

Fig. 5 Uniform Transmissim Ltie Model

Again transversely evanescent lines can be
obtained by substituting k=jh.

The core and cladding terminations still
must be specified. The radial function approx-

imations are not valid for a section of line
which includes r = O. This problem is circum-

vented by moving one section to the right and
ccmputing the core impedance frcm equation
for TE modes or equation (19) for the HE tie

“l~dingby taking the limit as x~O,y fixed, yle

{

-jz(ro)J~(y)/Jo(y) TE n-odes
z

core’
(21)

-jz(ro)Ji(y)/Ji(y) %1 ‘de

The cladding is defined by a cutoff line of
infinite length. Thus, for x fixed and y--+ m

{

-jZ(r)K&/Ko(x) TE modes

z
clad=

(22)
-j.Z(r)Ki(X)/KI(X) ’11 ‘de

K is the mo5ified Bessel function of order n.
All ccrmnents pertaining to the numerical results
for the slab carry over here. The ability of
the uniform line cascade to accurately mcdel a
radial transmission line can be verified by
considering a uniform (no gradi~) dielectric
rcd since e~act results for this case are ob-
tained readily. Such a cmparison for the HE1l

mode is shown in table 2. Tables 3 and 4 Qive

the dispersion index for the TEon and HE1l ties
of the uniform line model of the graded Index
rcd with a square law profile. Note that a
significantly larger nunber of lines is
necessary for the HE ~ de because ‘f ‘he

$additional approxtia Ions made.

UNIFOFM DIELECTRIC ROD

’11
mode, K = 50

0

& & no. of lines
78.23 7.06x10~; exact
78.22 7.95xlo_” 30
78.22
78.23

7.54xlo:
7.27x10

40
50

GRADED INDEX ROD
TE modes, K. = 50, A = 0.05

on

;g (40-lines)
: 1.43X1O-4
2 1.36x10-3
3 6.5 x1O:;

4 1.56x10-2
5 2. 76x1O

TASLE 3

GRADED INDEX

125
150
175
200

b (50-lines)
1.25x10-4
1.35X1O-2
6.51x10~~
1.57xlo_2
2.77x1O

ROD

No. of lines
100

‘En
mode, K = 50, A = 0.05

0

& -5
1.91X10-5
1.85x10_5
1.77X10-5
1.68xlo_5
1. 62x1O

TASLE 4
10 “
T Tg has units of microseconds/kilometer
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